Permutation & Combination Problems

Combinations

1.Evaluate 30!/28!
Sol:-             30!/28! = 30 * 29 * (28!)  / (28!)
                                            = 30 * 29 =870


2.Find the value of 60P3
Sol:- 60P3  = 60! / (60 - 3)! = 60! / 57!
                                             = (60 * 59 *58 * (57!) )/ 57!
                                              = 60 * 59 *58
                                                = 205320


3. Find the value of 100C98        50C 50
Sol:-               100C98   = 100C100 - 98)
                             = 100 * 99 / 2 *1
                             = 4950
                   50C50 = 1


4.How many words can be formed by using all the letters of the word "DAUGHTER" so that vowels always come together & vowels are never
together?
Sol:- (i) Given word contains 8 different letters
              When the vowels AUE are always together we may suppose
              them to form an entity ,treated as one letter
              then the letter to be arranged are DAHTR(AUE)
              these 6 letters can be arranged in 6p6 = 6!
                                                    = 720 ways
             The vowels in the group (AUE) may be arranged in 3! = 6 ways
             Required number of words = 760 * 6 =4320


(ii) Total number of words formed by using all the letters of the given
  words
                8! = 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1
                              = 40320
           Number of words each having vowels together
                    = 760 * 6
                    = 4320
            Number of words each having vowels never together
                   = 40320 - 4320
                   = 36000


5.In how many ways can a cricket eleven be chosen out of a batch
of 15 players.
Sol:- Required number of ways
                                       = 15C 11 = 15C (15-11)
                                       = 15 C 4
                              15C4 = 15 * 14 * 13 * 12 / 4 * 3 * 2 *1
                                        = 1365

6.In how many  a committee of 5 members can be selected from 6 men
5 ladies consisting of 3 men and 2 ladies
Sol:-           (3 men out of 6) and (2 ladies out of 5) are to be chosen
              Required number of ways
                                       =(6C3 * 5C2)
                                       = 200


7.How many 4-letter word with or without meaning can be formed out
of the letters of the word 'LOGARITHMS' if repetition of letters is
not allowed
Sol:-        'LOGARITHMS' contains 10 different letters
                  Required number of words
                            = Number of arrangements of 100 letters taking
                                         4 at a time
                                     = 10P4
                                     = 10 * 9 * 8 * 7
                                     = 5040


8.In how many ways can the letter of word 'LEADER' be arranged
Sol:-     The word 'LEADER' contains 6 letters namely
                           1L, 2E, 1A, 1D and 1R
               Required number of ways
                                   =  6! / (1!)(2!)(1!)(1!)(1!)
                                   = 6 * 5 * 4 * 3 * 2 *1 / 2 * 1
                                   =360


9.How many arrangements can be made out of the letters of the word
'MATHEMATICS' be arranged  so that the vowels always come
together
Sol:-    In the word 'MATHEMATICS' we treat vowels
           AEAI as one letter thus we have MTHMTCS(AEAI)
           now we have to arrange 8 letters out of which M occurs
           twice ,T occurs twice & the rest are different
           Number of ways of arranging these letters
                                         = 8! / (2!)(2!)
                                         = 10080
now AEAI has 4 letters in which A occurs 2 times and the rest
are different
          Number of ways of arranging these letters
                                                 = 4! / 2! = 12
          Required number of words = (10080 * 12)
                           

Popular Posts